
TEAM PROP SIMULATIONAPRIL TAG SIMULATION

P A G E 8

In the past, we would only ever use Roadrunner to code our autonomous paths. But after last
year, when the only limiting factor in our auton cycles was speed, I knew that something
needed to change. After brainstorming with the team, making simulations in Desmos, and
spending late nights for testing and tuning, we finally created our own custom PurePursuit
algorithm. I can safely say that this autonomous is the best one we’ve ever coded by far.

What challenges did we
face in previous seasons?

Brainstorm solutions while
collaborating with design

subteam for sensor
implementation

Problem: Needed robot to follow efficient paths that could be quickly developed
Initial Solution: Roadrunner path library was limited to basic trajectories and relatively slow
development time
Solution: Created a custom Pure Pursuit algorithm for efficient paths and streamlined
development

JEREMY’S STORY - PURSUING THE PEFECT AUTON

T E A M 1 9 8 1 9 A S T R O B R U I N S

TESTINGBRAINSTORM

Create simulations to test
theoretical algorithms

implementation

Enables concurrent
workflow with design team

and limits errors

Over multiple trials, test
speed and consistency of
both individual and full
subsystem controls

Compare improvements
of newly-coded algorithms
to previous methods

Evaluate options and
reiterate; consider

complexity and benefits

Connect with industry
mentors to learn new

algorithms

PLAN & SIMULATE ITERATE

Programmed pathfinding algorithm that generates optimal pathfinding between waypoints
Created a Desmos simulation to test our derived equations for finding intersections
Used another custom simulator to evaluate the waypoints of our trajectory.

INTERSECTION EQUATIONINTERSECTION SIMULATION ON DESMOS

PURE PURSUIT ALGORITHM

Pure Pursuit allows us to
generate complex curved

robot paths (blue) with
simple waypoint lines

(green)

1.5x faster path following than Roadrunner library; allows for more complex autonomousIMPACT

SOFTWARE DESIGN PROCESS

AUTONOMOUS
objective: Score both pre-loaded pixels and cycle from the pixel stack

P A G E 9

TEAM PROP SIMULATIONAPRIL TAG SIMULATION

Two heads are always better than one. That’s usually how the saying goes, but combining four
sensor inputs with our Kalman Filter was a lot harder than expected. Since each sensor has its
own noise and poll time, things become complicated. After noticing that the Kalman Filter was
lagging behind, we realized our moving window was a whopping 300 ms-- too much old
information. The Kalman Filter can be confusing, but every day, we learn more about why it
works the way it does.

T E A M 1 9 8 1 9 A S T R O B R U I N S

AIDAN’S STORY - KALMAN FILTER CONFUSION

Tested for memory leaks and optimized build
times in EasyOpenCV Simulator
Needed April Tag and Team Prop pipelines for
localization and autonomous objectives

Problem: Using the built-in controller was too slow;
Extending with full power was inaccurate

Solution: Implement custom trapezoidal motion profiling
with PID to optimize speed and control

Impact: Extension time improved by 22%, with accuracy
within less than half a centimeter of target position

CUSTOM PID PROFILE

APRIL TAG
SIMULATION

CUSTOM PIPELINE
SIMULATION

LINEAR SLIDE PID EASYOPENCV AND APRIL TAGS

Dead Wheel
Odometry

Distance Sensors

Control Hub IMU

Logitech C922 Webcam
Used non-linear regression and a moving window to
fuse all localization methods while ensuring that
outliers were eliminated

Impact: Reduces localization error to less than 2 cm
when driving across the field, allows robot to reliably
drive to stacks and cycle in autonomous

Initial Solution: Used Odometry and IMU, but
experienced severe drift in robot’s position estimate
Final Solution: Combined multiple sensors (Odometry,
IMU, Distance Sensors, AprilTag Vision) in an extended
kalman filter

BOTTOM OF ROBOT

FRONT OF ROBOT

EXTENDED KALMAN FILTER SENSOR OVERVIEW

KALMAN FILTER RELOCALIZATION

EXTENDED KALMAN FILTER
Problem: Need to know exact position of robot to
execute autonomous paths

Slide extension time
is the limiting factor
when cycling, this
22% improvement
leads to a full cycle
improvement of
12.5%

TEAM PROP SIMULATIONAPRIL TAG SIMULATION

Fold, load, and launch. Rinse and repeat. After countless drone launches, I finally
accumulated enough data to train our machine learning model. We could now
represent the drone flight path with a graph and return the optimal launcher angle
based on the robot’s position on the field. The drone might be counted as endgame
points, but I now consider it to be 100% autonomous.

EXAMPLE STATES

FINISH TMRW

P A G E 1 0
T E A M 1 9 8 1 9 A S T R O B R U I N S

VIHAAN’S STORY - SCORING AUTON POINTS IN ENDGAME

Problem: Actions across multiple systems are
completed linearly, or one at a time

Problem: Basic mecanum drive is hard to control
(confusing without clear view of robot)

DRIVER-RELATIVE CONTROLS STATE MACHINES

DIFFERENTIAL INVERSE KINEMATICS SIMULATION
Problem: Original “box” outtake couldn’t consistently create mosaics because of
imprecise pixel placement

Solution: Accurate control of differential claw
Derived servo power using Inverse Kinematics Simulation
Found rotational positions of gears based on desired claw position

DIFFERENTIAL
SIMULATIONS

IN UNITY

Trained parabolic regression loss model on dataset collected
via drone launcher videos
Validate and adjusted model output based on real-life testing
Tested final model angle outputs based on distance to zone
(input)

PARABOLIC REGRESSION SIMULATION

Problem: Drone launcher only had one preset angle, requiring
a specific launch position
Solution: Automatic, machine-learning based drone launcher
angling based on robot position

DRONE TRAJECTORY SIMULATION

Reduced the complexity of endgame controls, resulting in ~8% faster endgame objective completionIMPACT

Easier drivetrain control
reduces cycle times by 1 second.IMPACT

Minimized dependencies on other
subsystems, decreasing yellow pixel
deposit time by 2 seconds

IMPACT

Solution: State machine contains goals that each
subsystem pursues simultaneously, enabling control of
multiple subsystems at the same time

Solution: Driver
relative robot controls
provides streamlined
driving experience.
Vertical joystick input
translates to
movement along an
axis, rather than the
forward direction of
the robot

TELEOP
objective: Accomodate for adaptable gameplay with simple controls

